
AutoMine: Harmonizing High-Level
Abstraction and High Performance for

Graph Mining
Daniel Mawhirter

Colorado School of Mines
dmawhirt@mymail.mines.edu

Bo Wu
Colorado School of Mines

bwu@mines.edu

Abstract
Graph mining algorithms that aim at identifying structural
patterns of graphs are typically more complex than graph
computation algorithms such as breadth first search. Re-
searchers have implemented several systems with high-level
and flexible interfaces customized for tackling graph mining
problems. However, we find that for triangle counting, one
of the simplest graph mining problems, such systems can be
several times slower than a single-threaded implementation
of a straightforward algorithm.

In this paper, we reveal the root causes of the severe inef-
ficiencies of state-of-the-art graph mining systems and the
challenges to address the performance problems. We build
AutoMine, a single-machine system to provide both high-
level interfaces and high performance for large-scale graph
mining applications. The novelty of AutoMine comes from
1) a new representation of subgraph patterns and 2) compila-
tion techniques that automatically generate efficient mining
code with minimized memory consumption from a high-
level abstraction. We have extensively evaluated AutoMine
against 3 graph mining systems on 8 real-world graphs of dif-
ferent scales. Our experimental results show that AutoMine
often produces several orders of magnitude better perfor-
mance and can process very large graphs existing systems
cannot handle.

CCS Concepts •Computingmethodologies→ Shared
memory algorithms; • Software and its engineering→
Compilers.

Keywords Graph mining, graph pattern matching, com-
piler

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00
https://doi.org/10.1145/3341301.3359633

ACM Reference Format:
Daniel Mawhirter and Bo Wu. 2019. AutoMine: Harmonizing High-
Level Abstraction and High Performance for GraphMining. InACM
SIGOPS 27th Symposium on Operating Systems Principles (SOSP ’19),
October 27–30, 2019, Huntsville, ON, Canada. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3341301.3359633

1 Introduction
Graph data, thanks to the flexibility of the structure, is ubiq-
uitous in various domains, ranging from bioinformatics to
social networks to web analytics. Efficiently processing large-
scale graphs has attracted great attention leading to a number
of highly optimized systems [25, 28, 29, 34, 40, 42, 64, 65].
Most of these systems provide a “think like a vertex" (TLV) or
“think like an edge" (TLE) programming paradigm to imple-
ment graph computation algorithms. Example applications
are breadth-first search (BFS) and PageRank, which can be
modeled through iterative sparse matrix vector multiplica-
tion [24, 46]. In each iteration, the system traverses all active
vertices or edges, but the processing of each vertex or edge
only involves lightweight computation and generates lim-
ited intermediate data. For instance, in BFS an active vertex
sends its label to all its unexplored neighbors. As such, the
optimization efforts of graph computation problems mainly
focus on communication reduction [18, 19], locality improve-
ment [25, 65], and load balancing [11, 34].
Graph mining problems, however, are fundamentally dif-

fer from graph computation problems, because they involve
much more complex algorithms and generate huge amounts
of intermediate data. For example, the state-of-the-art algo-
rithm to mine the frequency of size-4 cliques of a graph is
O (|E |∆Tmax), where E, ∆, and Tmax respectively represent
the edge set, the maximum degree, and the maximum num-
ber of triangles incident to an edge. The algorithm needs
to enumerate all the triangles of the input graph, which are
subgraphs of the size-4 cliques. The size of generated inter-
mediate data can reach several TB for graphs with multiple
million edges. The TLV or TLE based systems only maintain
states on vertices or edges, which do not consider the sub-
graph pattern in graph mining problems. Therefore, neither
do such systems provide a friendly interface to write graph
mining algorithms, nor are they optimized to handle the
large amount of intermediate data.

https://sosp19.rcs.uwaterloo.ca/
https://sosp19.rcs.uwaterloo.ca/
https://doi.org/10.1145/3341301.3359633
https://doi.org/10.1145/3341301.3359633

To address the mismatch, researchers have recently de-
signed multiple systems that explicitly maintain states for
subgraph patterns [10, 46, 51, 55]. Arabesque [46] is the first
distributed system that proposes the "think like an embed-
ding" paradigm, where an embedding is an instance of a
subgraph pattern. By incrementally appending edges to em-
beddings, Arabesque can enumerate all the embeddings of
any desired subgraph pattern, which are processed by user-
defined filter and process functions. But distributed mining
systems incur high overhead for small graphs and require
enterprise clusters for large graphs. Wang et al. address this
problem by proposing RStream [51], a single-machine graph
mining system. RStream combines edge streaming for out-
of-core processing and relational algebra operators for users
to compose graph mining applications. Despite using less
resource, it outperforms several state-of-the-art distributed
mining systems on a variety of graph mining workloads.

Unfortunately, although Arabesque and RStream are spe-
cialized systems for graph mining problems, their perfor-
mance is far from ideal. To perform triangle counting on a
medium-sized graph (i.e., MiCo [14]) with 1.1 million edges,
Arabesque needs 43 seconds on a 10-node cluster [51]. Our
experiments on a 20-core machine show that RStream takes
2.5 seconds to process the same graph, but a single-threaded
program based on a simple triangle counting algorithm fin-
ishes the execution in 0.97 seconds. To provide the high-
level abstraction, both Arabesque and RStream implement
generic yet low-efficiency graph mining algorithms that de-
mand tremendous memory consumption. When facing two
conflicting goals of providing a high-level abstraction and
high performance, a classical problem in system design, they
choose the former over the later.
In this paper, we present AutoMine, the first large-scale

graph mining system to harmonize high-level abstraction
and high performance on a single machine. A naive approach
to provide the best of both worlds is to manually implement
various graph mining algorithms and present easy-to-use
interfaces to the user. However, this approach faces extreme
difficulties because the topology of the subgraph pattern
can take numerous forms and the user may be interested in
mining different combinations of subgraph patterns. On the
contrary, AutoMine does not explicitly implement any graph
mining algorithm. It takes a high-level graph mining pro-
gram as the input and automatically compiles it into efficient
C++ code with low algorithm complexity and minimized
memory consumption.

We face two challenges to implement AutoMine. The first
challenge roots from the many possible algorithms to solve
the same graph mining problem. AutoMine should automat-
ically explore the algorithm space and properly rank the
algorithms to select an optimized one for code generation.
We point out that in the data mining community, researchers
focus on one subgraph pattern (e.g., triangle counting) at a
time and manually design algorithms [4, 22]. To the best of

our knowledge, there exists no prior work on automatically
generating efficient graph mining algorithms.
The second challenge is how to minimize memory con-

sumption. Existing systems generate large amounts of inter-
mediate data, because graph mining problems have nested
dependencies: A subgraph pattern is built upon its own sub-
graphs. Those systems take an easy approach to meet the
dependencies, which enumerates and stores all the embed-
dings of a simple sub-pattern before moving on to generate
embeddings of a more complex one. AutoMine should also
respect the dependencies but still find room to dramatically
reduce memory consumption in the generated algorithm and
code at compile time.

AutoMine addresses the challenges with three novel ideas.
First, it represents an embedding by a vertex composition set
(i.e., a set of sets of vertices), which 1) saves space compared
to table or graph based representations and 2) provides the
foundation for automatic algorithm and code generation.
Second, AutoMine’s schedule generator models a subgraph
pattern mining problem as a graph tournament problem and
generates algorithms to produce the composition set as well
as encode its meaning. Third, when the user program is
interested in multiple subgraph patterns, AutoMine’s code
generator automatically merges the generated algorithms for
these patterns to minimize redundant work and maximize
data sharing.
AutoMine is a flexible system that supports the sophisti-

cated functionality of existing systems. AutoMine can pro-
cess labeled graphs with a support parameter to filter out
subgraph pattern whose frequency does not meet the thresh-
old. Moreover, by leveraging memory mapped I/O, AutoMine
can process out-of-core graphs that do not fit in the memory
by taking advantage of the locality of the generated mining
algorithms.
The proposed techniques allow AutoMine to be signif-

icantly faster than existing systems while still providing
high-level interfaces. Our experimental results show that
AutoMine often outperforms RStream and Arabesque by sev-
eral orders of magnitude for 4 graph mining applications
running on real-world graphs of different scales. Though
AutoMine generates exact graph mining programs, it even
outperformsASAP [23], a state-of-the-art approximate graph
mining system, by up to 68.8X for size-3 motif counting. We
find that RStream’s out-of-core processing cannot support
triangle counting on a graph of 783 million edges given 2TB
SSD space, while AutoMine successfully finishes triangle
counting and size-4 clique counting on a much larger graph
with 25.7 billion edges.

This papermakes the following contributions: 1)We present
AutoMine, the first single-machine graph mining system to
provide both high-level abstraction and high performance for
graph mining applications. 2) We propose a space-efficient
representation of embeddings that lays the foundation for
automatic mining algorithm generation. 3) We propose a

set of modeling and optimization techniques to generate
efficient graph mining programs in C++ with low complex-
ity and minimized memory consumption. 4) We evaluate
AutoMine by comparing it against 3 state-of-the-art graph
mining systems on 8 real-world graphs. The results show
that AutoMine substantially outperforms all these systems
with minimal programming effort from the user.

2 Motivation
2.1 Single-threaded Triangle Counting vs.

State-of-the-art Graph Mining Systems
Existing graph mining systems provide a high-level abstrac-
tion for users to easily write applications. To understand the
performance of such systems, we follow the methodology
used by McSherry et al. [32] and compare RStream, which
was the fastest among 4 state-of-the-art mining systems (in-
cluding Arabesque) [51], with a single-threaded program for
triangle counting. The program implements a simple triangle
counting algorithm used in many prior studies [4, 43, 47, 48]
as shown in Algorithm 1. Although the performance of tri-
angle counting can be dramatically improved by locality
optimization (e.g., tiling-based data reorganization [62]), we
stick with the unoptimized implementation for a fair compar-
ison, because RStream may not apply similar optimizations.

Figure 1 shows the running times with 6 real-world graphs
on a 20-core machine (details in Section 8). Observe that
even though the single-threaded program only uses 1 core,
it always outperforms RStream using 20 cores and produces
up to 5.7X speedup. We point out that McSherry et al. [32]
showed that their single-threaded benchmark outperforms
the fastest graph computation systems by only up to 1.7X.
Our results suggest that the high-level abstraction of the
graph mining systems eats up even more performance.

Algorithm 1: Triangle counting.
input : G : the Graph.
output : n : the number of triangles in G.

1 begin
2 n ← 0;
3 for v0 in V do

// N (v) returns a set that contains

all v’s neighbors

4 for v1 in N (v0) do
5 s ← N (v0) ∩ N (v1);
6 n ← n + |s |;

7 n ← n/6;

0.97 6.2

53.8

4.2

34.7

2.5 9.6

146

23.9

106

0

50

100

150

200

MiCo Patents LiveJournal-1 Youtube LiveJournal-2

Ex
ec

ut
io

n
Ti

m
e

(S
)

Single Threaded
Rstream

Figure 1. Performance comparisons on triangle counting.

2.2 Root causes and challenges
Reason 1: Existing graph mining systems implement
generic but low-efficiencymining algorithms. The state-
of-the-art systems provide a high-level abstraction to imple-
ment graph mining applications. They typically implement
the bulk synchronous parallel (BSP) model and maintain a
list (or lists) of embeddings. In each iteration, they try to
append one more edge to each of the current embeddings
to generate more complicated ones. The process continues
until all the embeddings of the considered subgraph patterns
have been enumerated. Figure 2 shows an example of the
iterative process to perform triangle counting in RStream.
The initial embeddings are a list of all the edges. To append
new edges to generate wedge embeddings, RStream executes
a join operation on the edge list. The complexity of the join
operation is O (|E |) if the edge list is sorted. In the next it-
eration, RStream joins the edge list with the list of wedge
embeddings, whose worst case size is |V |∆2. The simple
triangle counting algorithm has complexity O (|E |∆). Since
|V |∆ is typically much larger than |E |, the triangle counting
algorithm is much more efficient in practice, especially for
power-law graphs. So the state-of-the-art systems have a
serious shortcoming compared to specially designed graph
mining algorithms.

Challenges for the remedy. A strawman approach is to im-
plement the state-of-the-art graph mining algorithms as a li-
brary and provide high-level interfaces. Unfortunately, graph
mining has a well-known combinatorial explosion problem
as we increase the subgraph pattern size. For example, there
exist only 6 different size-4 connected subgraph patterns but
21 size-5 connected patterns. Designing and implementing
specialized algorithms for even the small subgraph patterns
(e.g., size less than 7) is labor-intensive. Ideally, we should
automatically generate the efficient mining algorithms, but
we face an enormous challenge because they differ dramati-
cally for different subgraph patterns. For instance, Ahmed et
al. [4] propose for all the size-4 subgraph patterns 6 distinct
algorithms with varying structures and complexities.

Reason 2: Existing graphmining systemshave highmem-
ory consumption. To process the Patents graph with 16.5
million edges, RStream consumes more than 22GB mem-
ory, while the single-threaded program only needs 158MB

b a

c

Target	Pattern:
Triangle

Iteration	1:
One	Edge
a b

a c

b c

…

Iteration	2:
Two	Edges

b a

c

…

Iteration	3:
Three	Edges

b a

c

…

Global	Synchronization

Figure 2. Embedding enumeration for triangle counting in
RStream.

API Pattern Enumeration Schedule Generation Code Generation

C++
ProgramMC(4)

Graph

Embedding Counts
for each Pattern

Basic APIs

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐸𝑑𝑔𝑒[] 𝑒𝑑𝑔𝑒𝑙𝑖𝑠𝑡 ;
𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑐𝑜𝑢𝑛𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑃𝑎𝑡𝑡𝑒𝑟𝑛[] 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ;
𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑃𝑎𝑡𝑡𝑒𝑟𝑛[] 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ;

Application-Level APIs

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐶𝐶 𝑖𝑛𝑡 𝑠𝑖𝑧𝑒 ;
𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑀𝐶(𝑖𝑛𝑡 𝑠𝑖𝑧𝑒);
𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐹𝑆𝑀(𝑖𝑛𝑡 𝑠𝑖𝑧𝑒, 𝑖𝑛𝑡 𝑠𝑢𝑝𝑝𝑜𝑟𝑡);

Executable

Figure 3. AutoMine architecture.

memory. RStream has such high memory consumption due
to its conservative approach to deal with dependencies. As
Figure 2 shows, RStream needs to generate all the wedge
embeddings (indicated by the global synchronization) before
moving to the next iteration to generate all the triangle em-
beddings. It hence has to allocate enormous memory space to
store the generated intermediate data. If the required space
does not fit in the main memory of one machine, RStream
flushes the data into disk.

Challenges for the remedy. Figure 2 illustrates a simple
idea to minimize memory consumption. To enumerate the
triangle embedding (a, b, c), we only need to first generate
the wedge embedding (a, b, c) it depends on, instead of all the
wedge embeddings. However, it is difficult to generalize the
idea to more complex subgraph patterns especially for au-
tomatic algorithm generation. Moreover, multiple subgraph
patterns may share the same sub-pattern. For example, both
the size-4 clique pattern and the chordal cycle pattern (i.e.,
clique minus a diagonal) have triangles in them. Thus, if the
system does not store all the embeddings of the sub-pattern,
it may need to re-generate or maintain duplicate embeddings,
leading to extra space overhead.

3 Overview of AutoMine
In this work, we design the AutoMine system to bridge the
gap between high-level abstraction and high performance
for graph mining applications. AutoMine does not require
the user to understand the mining algorithms or system
optimization details, but presents a set of high-level APIs.
AutoMine automatically generates highly efficient mining

programs with low algorithm complexity and minimized
memory consumption. We first present the overall architec-
ture of the system with an end-user example and then the
APIs.

The workflow of the AutoMine system has a compilation
phase and an execution phase as shown in Figure 3. The
compilation phase takes a high-level API (MC(4) in the il-
lustrated example for size-4 motif counting) and generates
an optimized graph mining program by invoking three com-
ponents. The first component is the pattern enumerator. It
understands the semantics of the high-level API and enumer-
ates all the non-isomorphic subgraph patterns (6 in total for
size-4 motif counting) that are involved in the mining task.
The second component, the schedule generator, generates
an optimized schedule (i.e., algorithm) to identify each of
the subgraph patterns. Each schedule is represented by a
colored graph with directions assigned to the edges. The last
component is the code generator, which considers data reuse
in the generated schedules and produces the final mining
program in C++. In the execution phase, the mining program
processes input graphs and returns the final results.

APIs. Figure 3 shows the major APIs to use AutoMine. The
definePattern function defines a pattern with a list of 2-tuples,
each representing an undirected edge. For example, to define
a triangle pattern, user invokes the function as Pattern p =
definePattern([(a,b), (b, c), (c,a)]). Since AutoMine only sup-
ports connected patterns, it warns the user if the provided
list cannot form one. AutoMine supports two elementary
APIs, countPatterns and enumeratePatterns to generate pro-
grams to respectively count and enumerate the embeddings
of the given list of subgraph patterns. To make AutoMine
easy to use, it implements APIs to support 3 popular graph
mining applications: Clique Counting (CC), Motif Counting
(MC), and Frequent Subgraph Mining (FSM) (details in Sec-
tion 8). Each of these APIs invokes the pattern enumerator
to generate the list of subgraph patterns, which is passed
to enumeratePatterns or countPatterns to produce the final
mining program.

We next describe the key techniques in the schedule gen-
erator and the code generator. Due to space limit, we omit
the detailed description of the pattern enumerator, which is
a necessary component but only involves engineering work.

4 Set Based Representation
Section 2 shows that the simple triangle counting algorithm
is much more efficient than the generic algorithm imple-
mented in the state-of-the-art graph mining systems. We
make two observations about the algorithm. First, it exploits
the local structure of the input graph. In the innermost loop,
the algorithm discovers a set of vertices, each forming a tri-
angle with the edge embedding (v0,v1). The advantage is
that the algorithm can safely discard the edge embedding
immediately since all the more complex embeddings (i.e. the

triangles) built on it are discovered in the same loop iteration.
Second, each vertex of the discovered set corresponds to a
distinct triangle incident on (v0,v1). The intersection opera-
tion performed on the neighbor sets of v0 and v1 generates
the structure.

Inspired by this algorithm, we ask three questions: 1) Can
we generalize the set based representation for any arbitrary
pattern? 2) What operations should we use to compute a
set? 3) How canwe compose these set operations to discover
the set? In this section, we explore the first two questions
and consider the last question in the next section.

Consider a connected patternPk onk (k > 2) vertices, and
a sub-pattern Pk−1. An instance of Pk is an embedded sub-
graph denoted as EPk and composed of vertices (v0, ...,vk−1).
We introduce a function F k (EPk−1) which needs to meet two
requirements. First, it should return a set Vk of all the ver-
ticesvk that extend an embedding EPk−1 into an EPk . Second,
it must only apply set operations on the neighbor sets of the
EPk−1 ’s vertices.

Intuitively, F k exists because a graph is essentially a set
of neighbor sets. The neighbor sets of v0, ...,vk−1 should
have sufficient information for us to discover Vk precisely
because Pk−1 is connected. However, we only have four
basic set operations with which to implement F k : union,
complement, intersection, and subtraction. Only intersection
and subtraction are anti-monotonic, meaning their output is
no larger than the size of their largest input. So they are the
preferred operations to use. Fortunately, the following lemma
shows that these two are always sufficient to implement F k .

Lemma 1. F k can use only set intersection and subtraction
to discover Vk .

Proof. In order to construct the function F k , suppose a ver-
tex vk which can form an embedding EPk with the vertices
from EPk−1 . We partition v0, ...,vk−1 into two sets VT and
VF . VT contains all the vertices that are neighbors of vk in
Pk and VF includes the remaining vertices. Any vertexvk in
Vk must obey the following properties: vk ∈ N (v) for each
vertex v in VT , and vk < N (v) for each vertex v in VF . We
therefore construct F k as follows:

Vk = F
k (EPk−1) =

⋂
v ∈VT

N (v) −
⋃
v ∈VF

N (v)

Since Pk is connected, VT is not empty. F k first performs
a reduction on VT with intersection and then subtracts the
neighbor sets of the vertices inVF one by one from the result.
Vk hence includes the vertices that neighbor all v ∈ VT and
none of v ∈ VF , completing F k using only intersection and
subtraction. □

The proof introduces an algorithm to discover and rep-
resent embeddings of the more complex pattern Pk based
on any embedding of Pk−1. The base pattern P1 is a vertex,
with P2 being an edge. Hence, the vertex set Vk represents

a set of embeddings of the non-trivial pattern Pk encoded
by the sequence {F 1, ..., F k }, where F 1 returns the vertex
set and F 2 returns the neighbor set of a vertex. We name
this sequence a schedule of set operations. In other words,
once we have a schedule, we can iteratively apply it to all
the edge embeddings to discover a set of sets with all the
embeddings for an arbitrary pattern.

5 Schedule Generation
In the previous section, we show that once we have the sched-
ule for a particular pattern, we have an algorithm to discover
all its embeddings. This section presents the techniques to
automatically generate an optimized schedule for any given
pattern.

5.1 Modeling
The series of functions defined in Section 4 encodes the rela-
tionships among the vertices of a pattern. The functions {F 1,
..., F k } must be applied in order when computing patterns to
respect their dependencies. As explored previously, this also
implies an order in the discovery of the vertices v0, ...,vk−1.
While there is a one-to-one mapping between a series of
F k and a vertex order, there can be many possible series’ of
functions for the same pattern. We next determine how to
explore the space of possible schedules.
Given a pattern, we build a colored complete graph to

encode all the neighborhood relationships of the vertices.
Specifically, we color all of its present edges black and add
red edges for the absent ones. Figure 4 shows an example
of a colored complete graph for the chordal cycle pattern.
With this complete graph, we need to make two decisions.
First, we should assign an order to add vertices while dis-
covering progressively more complex patterns. Second, we
should assign directions to the edges. Direction encodes a
critical property in this construction, denoting which ver-
tex we should search for in the neighbor set of the other. A
symmetric graph has the following important property:

va ∈ N (vb) ⇐⇒ vb ∈ N (va)

Any pair of vertices which share an edge can therefore be
discovered in any order. And the diversity of the space of
possible orders gives rise to the diverse schedules for a given
pattern.
The directional edges form a tournament of the com-

plete graph, and each unique tournament identifies a dis-
tinct schedule. The tournament’s edges define relationships
encoded in the series of functions F k . Vertex vk has incom-
ing black edges from the vertices in VT and incoming red
edges from the vertices in VF , thus defining the schedule.
Chordal cycle, as shown in Figure 4, has 5 unique acyclic
tournaments, two of which are shown. The reason for the
choice of acyclic tournaments is described in the following
lemma:

𝑣" ∈ 𝑁 𝑣% − 𝑁 𝑣'
𝑣(∈ 𝑁 𝑣% ∩ 𝑁(𝑣') ∩ 𝑁(𝑣")

𝑣" ∈ 𝑁 𝑣% ∩ 𝑁 𝑣'
𝑣(∈ 𝑁 𝑣% ∩ 𝑁 𝑣' − 𝑁(𝑣")

Pattern Complete	Pattern

1 0

3 2

2 0

1 3
Schedules	(2/5	candidates)

Pseudocode
𝑓𝑜𝑟	𝑣% ∈ 𝑉
				𝑓𝑜𝑟	𝑣' ∈ 𝑁(𝑣%)
								𝑓𝑜𝑟	𝑣" ∈ 𝑁 𝑣% − 𝑁(𝑣')
												𝑓𝑜𝑟	𝑣(∈ 𝑁 𝑣% ∩ 𝑁(𝑣') ∩ 𝑁(𝑣")
																 𝑣%,	𝑣' , 𝑣", 𝑣(𝑖𝑠	𝑎𝑛	𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
																𝑐𝑜𝑢𝑛𝑡𝑒𝑟 += 1

𝑓𝑜𝑟	𝑣% ∈ 𝑉
				𝑓𝑜𝑟	𝑣' ∈ 𝑁(𝑣%)
								𝑓𝑜𝑟	𝑣" ∈ 𝑁 𝑣% ∩ 𝑁(𝑣')
												𝑓𝑜𝑟	𝑣(∈ 𝑁 𝑣% ∩ 𝑁 𝑣' − 𝑁(𝑣")
																 𝑣%,	𝑣' , 𝑣", 𝑣(𝑖𝑠	𝑎𝑛	𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
																𝑐𝑜𝑢𝑛𝑡𝑒𝑟 += 1

Optimized	Pseudocode
𝑓𝑜𝑟	𝑣% ∈ 𝑉
				𝑓𝑜𝑟	𝑣' ∈ 𝑁(𝑣%)
								𝑦0𝑦1 = 𝑁 𝑣% ∩ 𝑁(𝑣')
								𝑓𝑜𝑟	𝑣" ∈ 𝑁 𝑣% − 𝑁(𝑣')
												𝑓𝑜𝑟	𝑣(∈ 𝑦0𝑦1 ∩ 𝑁(𝑣")
																 𝑣%,	𝑣' ,	𝑣" , 𝑣(𝑖𝑠	𝑎𝑛	𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
																𝑐𝑜𝑢𝑛𝑡𝑒𝑟 += 1

𝑓𝑜𝑟	𝑣% ∈ 𝑉
				𝑓𝑜𝑟	𝑣' ∈ 𝑁(𝑣%)
								𝑙𝑒𝑡	𝑦0𝑦1 = 𝑁 𝑣% ∩ 𝑁(𝑣')
								𝑓𝑜𝑟	𝑣" ∈ 𝑁 𝑣% ∩ 𝑁(𝑣')
												𝑓𝑜𝑟	𝑣(∈ 𝑦0𝑦1 − 𝑁(𝑣")
																 𝑣%,	𝑣' ,	𝑣" , 𝑣(𝑖𝑠	𝑎𝑛	𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
																𝑐𝑜𝑢𝑛𝑡𝑒𝑟 += 1

Figure 4. Scheduling for Chordal Cycle

Lemma2. A tournamentmust be acyclic for its corresponding
schedule to exist.

Proof. Suppose a vertex v is part of a cycle [v0, ..., vn−1].
Assume a valid series of functions F k can be constructed
according to this cyclic tournament, and recall that F k is per-
mitted to operate only on the vertices [v0, ..., vk−1]. Suppose
v has an incoming edge from vertex vin and an outgoing
edge tovout , both from its cycle, each of which has a defined
value of k for its corresponding F k . The edges incident on
v demand that kvin < kv < kvout . But the cycle implies that
there exists a path from vout to vin through the vertices [v0,
..., vn−1], demanding that kvout < kvin . This forms a contra-
diction, and proves that a cyclic tournament cannot have a
valid schedule. □

Corollary 3. The proof of Lemma 2 demonstrates that an
acyclic tournament gives the vertices a total order, which is the
necessary condition for a schedule to exist.

According to Lemma 2 and Corollary 3, acyclic tourna-
ments and valid schedules have a one-to-one correspondence.
We therefore choose to iterate over the possible tournaments
in order to search the schedule space. In a k-vertex complete
graph, there are k! unique orderings of the vertices, and
therefore k! possible acyclic tournaments. The colored edges
distinguish between some of these orders, making them non-
isomorphic, and worth exploring. Note that cliques are a
special case, in which all k! permutations are in fact isomor-
phic, as there are no red edges to distinguish between them.
Since Lemma 1 demonstrates the construction of a schedule

from a vertex ordering, the space of all non-isomorphic col-
ored acyclic tournaments defines the scheduling space for a
particular pattern.

5.2 Multiplicity
We notice from the triangle counting algorithm that the
corresponding schedule has a multiplicity problem. Given a
triangle embedding, the same schedule (i.e.,N (v0) ∩N (v1))
can actually observe it from any of its edges. Each undirected
edge is represented symmetrically by two directed edges, so
we over-count by a factor of 6. We need to automatically
determine the multiplicity for a given schedule.
Symmetry in a pattern introduces this over-counting in

all possible schedules for a pattern. The key point is that
the order of vertex discovery for a schedule has a number of
possibilities equal to the pattern’s multiplicity. Consider the
tailed triangle (i.e., a triangle with a dangling edge) with 4
vertices (a, b, c , and d). The three vertices, a, b, and c , form
a triangle and d is a neighbor of c only. Now consider two
schedules to observe the pattern. The first schedule is:

F 2 = N (v0) ∩ N (v1)

F 3 = N (v2) − N (v0) − N (v1)

It first discovers a triangle and then the dangling edge. The
schedule can observe the pattern in two orders: (a, b, c , d)
and (b, a, c , d) because this pattern has a multiplicity of 2.

F 2 = N (v0) − N (v1)

F 3 = N (v0) ∩ N (v2) − N (v1)

This schedule starts from the dangling edge to discover a
wedge and then a triangle incident on the second edge of the
wedge. The schedule can observe the pattern in two orders
again: (c , d , a, b) and (c , d , b, a). Algorithm 2 generalizes
this strategy to determine the multiplicity of any pattern by
counting the automorphic vertex permutations. A schedule’s
result count divided by multiplicity yields the number of
unique pattern instances in a graph.

Algorithm 2: Computing Multiplicty for a Pattern
input :Pn : the Pattern.
output :M : the multiplicity of S counting Pn .

1 begin
2 M ← 0;
3 base_order ← range [0..n);
4 for order in permutations (base_order) do
5 Pattern P ′n ← empty;
6 for Edдe (va ,vb) in Pn do
7 P ′n .add_edдe (order [va],order [vb]);
8 if equal (Pn ,P ′n) then
9 M ← M + 1;

5.3 Root Symmetry
Multiplicity introduces a computation redundancy problem,
because a schedule may observe the same pattern several
times. Root symmetry is a special case of multiplicity that
only considers the first edge in the discovery order for a
schedule, which we refer to as the root edge. If this edge is
root symmetric, then we can halve the multiplicity by con-
sidering root edges in only one direction while processing
the graph. The method for determining if a schedule is root
symmetric is simple given the algorithm for multiplicity. If
the two vertices incident on the root edge are interchange-
able according to the isomorphism test in its inner loop, then
the schedule is root symmetric.
One perspective to understand the efficiency of the root-

symmetry property is that it prunes half of the directed edges
from consideration as root edges in F 2. Since the pattern
is nested, applying the idea to each sub-pattern can further
prune edges. We leave the generalization of this idea for ar-
bitrary patterns to future work, but show that it can greatly
improve the performance for clique patterns. Cliques have
a special case of multiplicity and root-symmetry, in that ev-
ery edge and vertex is indistinguishable, leading to a very
high multiplicity of k! for a k-clique. Even if we apply the
basic root-symmetry optimization, the multiplicity is still
k !
2 . Observe that after applying the root symmetry optimiza-
tion, the root edge becomes directional (i.e., v0 → v1). If
we remove v0 and its edges from the pattern, the remaining
sub-pattern is still a clique which is amenable to a second
round of the application of the same technique. So a deep
application of the root-symmetry idea at every level of F 2..k

eliminates the multiplicity entirely for cliques.

6 Code Generation
This section crystallizes the scheduling idea into a useful
system. We first describe how to generate code for a single
pattern with data reuse optimizations, followed by the tech-
niques to merge multiple schedules when having different
patterns. We then present the infrastructure to support the
generated code to process graphs.

6.1 Generating Code for a Single Pattern
Recall from previous section that given a pattern of size n,
its schedule is represented by a series of functions F k (0 ≤
k ≤ n), each depending on the vertices [v0, ..., vk−1]. Such a
pattern naturally lends itself to a nested loop structure. At
each loop level k , the loop body traverses the vertex set Vk−1
and apply F k to [v0, ..., vk−1] to create a vertex set Vk for
the next loop. When the execution reaches the innermost
loop, it observes [v0, ...,vn] as an embedding of the pattern.
Figure 4 shows two schedules for the chordal cycle pattern as
well as their corresponding loops to count the embeddings.
The generated loop structure, despite its simplicity, is highly
memory efficient. The only mandatory intermediate data for

a pattern of size k is the series of vertices [v0, ..., vk−1] and
some indices to track positions in their containing sets. Once
the corresponding loop is ready to move to another iteration,
it is safe to discard all the vertex sets that store [vk , ..., vn−1].
Existing systems do not have this property, because their
generic algorithms cannot keep track of the dependencies
between embeddings.

While such an approach minimizes the memory footprint,
it incurs redundant computation and data accesses. Because
each function F k depends on k − 1 neighbor sets, it must
access all of those sets each time it is computed. In the exam-
ple shown in Figure 4, the generated code for both schedules
accesses N (v0), N (v1), N (v2) in the innermost loop. Ob-
serve thatN (v0) ∩N (v1) is loop-invariant, meaning that its
result remains the same across iterations of the innermost
loop. Ideally, we should store the result ahead of time, paying
an up-front computation and data access cost to avoid the
redundancy in the future. In the optimized code, we move
the operation to the second loop and store the result in a
vertex set y0y1. We next describe how to generalize this idea
for arbitrary patterns.

We define a prefix of F k as another function F k
p where

2 < p < k , which contain all F k ’s operations on only ver-
tices [v0, ..., vp−1]. If the prefix is pre-computed and its re-
sults stored, we only have to access the neighbor sets of
[vp , ..., vn−1] to complete the computation of F k . For the
two schedules of the chordal cycle pattern shown in Fig-
ure 4, N (v0) ∩ N (v1) is a prefix of of the last schedule
function computed in the innermost loop. If we precom-
pute N (v0) ∩ N (v1), the only neighbor set accessed in the
innermost loop is N (v2).

During code generation for the loop at level k , we traverse
each of [F k , ..., F n] and try to generate code to compute and
store the prefix that depends on [v0, ..., vk−1]. The code gen-
eration always succeeds as long as the corresponding VT set
(from Section 5) is non-empty, the same requirement for the
use of intersection and subtraction. We aggressively apply
this optimization because of two reasons. First, it reduces the
computation redundancy as we previously discussed. Sec-
ond, due to the anti-monotonic property of intersection and
subtraction discussed in Section 4, the size of the resultant
set of a prefix is typically much smaller than the size of its
largest input set, which means the inner loops would access
much less data. Parallelism is easy to apply within this model
using OpenMP on the outermost loop.

6.2 Estimating Optimality
From the space of all possible schedules for a pattern, we
will need to select one to use in practice. To achieve this goal,
there must be a way to estimate the relative performance
of each schedule. It is challenging because of the embed-
ded structure and the complex set compositions used in the
schedules. Moreover, the relative cost may even depend on

the topology of the input graph. We simplify the problem
by leveraging a random graph of n vertices, in which any
pair of vertices are neighbors with probability p. Hence, the
expected size of a neighbor set is n × p. The expected size
of N (vi) ∩ N (vj) and N (vi) − N (vj) is hence n × p2 and
n×p× (1−p), respectively, wherevi andvj are two different
vertices. With the estimate for the two basic operations, we
can further estimate the size of the resultant set of any F k .
The estimation works even if the prefix pre-computation
optimization is applied, because a prefix also uses only inter-
section and subtraction operations. Given the estimate of the
size of all the sets, we can derive the number of iterations
of each loop and thus the number of neighbor set accesses
in each loop level. By accumulating these estimates over
the nested loop structure, we obtain the complexity for the
schedule in n and p. When we compare the complexity of
different schedules,n is always canceled out, so we only need
to define p to properly rank all the schedules. We empirically
choose 10−5 for p in our system to approximate the density
of our chosen datasets.

6.3 Multi-Pattern Scheduling
When preparing a combined schedule for multiple patterns,
we take the one for each pattern with the lowest data access
complexity according to the prior analysis and combine them
to form the merged schedule. Schedules for every pattern
start with the same F 1 and F 2, and may remain the same for
levels beyond that. Overlap of prefixes can also contribute
to data reuse, so running schedules for multiple patterns at
the same time is clearly desirable. Schedules always begin
converged, and then diverge at some level k , as soon as F k

for the schedules differ. Note that once they diverge, they
never re-converge. Even if later functions match again, they
cannot be combined again, as the paths they took to get there
are different. We refer to this as the identity problem, and it
affects the way combined prefix storage is handled. Because
divergent paths cannot share data, only the future function
to be computed among paths that are still converged should
be considered when selecting which prefixes to compute.

6.4 Supporting Infrastructure
Graph Data AutoMine stores graphs in the binary com-
pressed sparse row format, in which the vertex array stores
offsets into the edge array. A vertex vi can find its sorted
neighbor list at edge[vertex[i] : vertex[i + 1]]. We use this
format for both the in-memory and on-disk storage of graphs,
making the graph data simple to handle, and enabling the
option to process memory-resident or disk-resident graphs
for out-core-processing.

Parallelization AutoMine uses OpenMP to parallelizemin-
ing tasks. Accesses to the graph are read-only, and inher-
ently thread-safe. Accumulators are protected by OpenMP

reduce (+) directives such that each thread accumulates re-
sults into thread-local memory until the parallel region ends.
This makes the implementations easier to generate, as the
parallelism is handled automatically.

Memory Management Two goals should be fulfilled by
the memory management. First, graph data should not be
copied, as it can be read directly. Second, the scratch space
used for intermediate storage should be thread-local and
reusable to avoid repeated allocation. We achieve these two
goals using a VertexSet class which can either contain a
read-only reference to graph data, or a writable reference to a
scratch region. The scratch data is allocated at the beginning
of execution according to the needs of the program. Since no
composition of sets using intersection and subtraction can
exceed the size of its largest operand, each region is allocated
to hold maximum degree vertices. The regions are returned
to the available memory pool when a memory-managed
VertexSet goes out of scope.

Operators The VertexSet class also handles the intersec-
tion (∩) and subtraction (-) operations as binary operators
which, when called, return a memory-managed VertexSet
containing the results. Note that the subtraction operation
performs one check beyond its defined set operator scope.
Since the edge pair (v0,v1) (v1,v0) is not a wedge, but v0 ∈
N (v1) − N (v0), we must specifically exclude the vertex it-
self from subtractions when its neighbor list is a right-hand
operand. The modification is trivial, but necessary for cor-
rectness.

7 Additional Features
7.1 Supporting out-of-core processing
The nested loop structure that AutoMine employs requires
little memory on top of the graph representation, while pre-
vious work may produce multiple terabytes of intermediate
data, stored either in distributed memory or on disk. In the
case of the Motif-4 application on the MiCo graph with 1M
edges, RStream generates 1.21TB of intermediate data, which
it stores to disk. In our system, the graph representation con-
sumes about 9MB of memory (755KB of vertex data, 8.3MB
of edge data), and the intermediate data takes up an addi-
tional 1.7MB. For many graphs that trigger the out-of-core
processing of existing systems, AutoMine can easily fit the
entire workload into the main memory of a single machine.

For very large graphs, we may want to employ out-of-core
processing to lighten the load of the graph data in memory,
which dominates the memory requirement. In this case, Au-
toMine leverages memory-mapped files to support out-core-
processing. The vertex data file and edge data file can be page
faulted into physical memory as needed, and remain on disk
when it is not. The key factor that makes this an efficient
approach is that the total access costs to a given vertex are
super-linear in the degree of the vertex. For triangle counting

the cost is quadratic, which continues to grow as the target
pattern size increases. These super-linear costs produce large
differences in access frequency between large-degree and
small-degree vertices. The pages that contain the neighbor
set of large-degree vertices become hot pages that occupy
most of the available memory. We evaluate the efficiency of
the out-of-core processing support in Section 8.

7.2 Supporting labeled graphs
Frequent Subgraph Mining (FSM) is unique from the other
mining tasks that we consider in that it demands a labeled
graph. Labeled patterns with the same topology, in this for-
mulation, are different if their labels differ (i.e. the definition
of isomorphism is expanded to include labels). Given a la-
beled pattern, AutoMine first generates a schedule of its
unlabeled version and includes a lookup table to distinguish
between instances of the labeled patterns. The FSM task also
introduces a support parameter, which sets a threshold for
the minimum number of embeddings of a labeled pattern
to exist before it must be counted. This parameter has more
selective power when considering a labeled graph, due to
the lower average number of occurrences of each possible
pattern.

In order to leverage this selectivity, however, the algorithm
must proceed by growing patterns in the BSP style described
in Section 2, which drives huge intermediate data require-
ments. But failing to maintain the intermediate data would
make it impossible to determine if a computation could be
avoided due to the support parameter. The implementation
of labeled graph processing conceptually performs the nested
loop schedule up to the next global synchronization point to
generate and store the corresponding vertex sets. These sets
are then pruned according to the support parameter, and
execution resumes. This global synchronization must occur
twice to process size-4 FSM.

8 Evaluation
In this section, we evaluate AutoMine’s performance against
three graphmining systems: Arabesque, RStream, andASAP [23],
specifically how well they scale to large graphs and patterns,
as well as the optimization techniques proposed in AutoMine.
The highlights of the results are as follows: 1) For 24 differ-
ent mining workloads on real-world graphs, AutoMine is
up to 4 orders of magnitude faster than Arabesque, running
on 10 machines, and RStream. 2) ASAP uses approximation
techniques to accelerate graph mining. Even when it uses
16 machines and 5% as the error target, ASAP takes on aver-
age 12.8X longer time to perform size-3 motif counting on 4
real-world graphs compared to AutoMine. 3) RStream runs
out of disk space (2TB) for graphs with millions of edges.
AutoMine, thanks to its efficient memory use and out-of-core
processing capability, can successfully process a graph with
more than 25 billion edges.

Graphs #Vertices #Edges Description
CiteSeer [14] 3264 4536 Publication citation
MiCo [14] 96638 1080156 Co-authorship
Patents [26] 3.8M 16.5M US Patents

LiveJournal-1 [7] 4.8M 42.9M Social network
Orkut [2] 3.1M 117.2M Social network

UK-2005 [9] 39.5M 783M Web graph
Youtube [57] 1.1M 3M Social network

LiveJournal-2 [57] 4M 34.7M Social network
GSH-2015 [8] 988.5M 25.7B Web graph

Table 1. Graph Datasets

8.1 Methodology
Graph mining applications AutoMine can generate pro-
grams to perform graph mining tasks for arbitrary patterns.
We use its capability to provide high-level interfaces to run
4 popular graph mining applications on labeled or unlabeled
graphs.

Triangle Counting (TC) is a simple mining task to count
all the embeddings of the triangle pattern (i.e., size-3 clique)
in an unlabeled graph.CliqueCounting (CC) counts all the
embeddings of the clique pattern given a specific size in an
unlabeled graph. It only involves the 1-hop neighbors of each
vertex but may incur heavy workload depending on the size.
Motif Counting (MC) counts all the embeddings of each
of the connected patterns of a particular size in an unlabeled
graph. We consider 3-motifs (wedge and triangle) and 4-
motifs (6 distinct patterns). Frequent Subgraph Mining
(FSM) aims at discovering interesting patterns in a labeled
graph. Given the support parameter and the pattern size,
it counts embeddings of the patterns whose appearances
exceed the threshold.

Datasets and settings Table 1 shows the 9 real-world graphs
used in the experiments. Wang et al. [51] used the first 6
graphs to evaluate RStream to demonstrate that it outper-
forms multiple other mining systems, including Arabesque,
by at least 1.7X. We hence also use these graphs to exper-
iment with AutoMine and RStream. Since we do not have
access to a private cluster, we use the performance numbers
reported by Wang et al. for Arabesque, which was run on
a 10-node cluster, each node equipped with a 8-core Intel
E5-2640 v3 CPU and 32GB memory [51].

The ASAP system is not released, but the authors reported
its performance on CiteSeer, MiCo, Youtube, and LiveJournal-
2 [23]. They used a cluster of 16 Amazon EC2 r4.2xlarge
instances, each having 8 virtual CPUs and 61GB memory.
We also use the 4 graphs to compare AutoMine with ASAP.

We run experiments with AutoMine and RStream on a
single machine with 2 10-core Intel Xeon E5-2630 (v4) CPUs
(hyper-threading enabled), 64GB of memory, and 2TB of SSD.
The machine runs on Ubuntu 16.04 with Linux kernel ver-
sion 4.4.0-143. We use the GCC compiler with optimization

level O3 to compile RStream and the programs generated by
AutoMine.

8.2 Comparisons with RStream and Arabesque
We run all 4 mining applications with AutoMine and RStream
on CiteSeer, MiCo and Patents, because the RStream paper
only shows the timing results on these graphs for Arabesque.
Table 2 reports the running times of the three systems, which
do not include the graph loading time.

For triangle counting, both RStream and Arabesque scale
poorly to larger graphs. Patents is amedium-sized graphwith
less than 20 million vertices, but RStream takes 9.6 seconds
to process it. Arabesque’s performance is even worse. Au-
toMine’s automatically generated triangle counting code pro-
duces 68.6X and 820.7X speedup over RStream andArabesque,
respectively. Observe that AutoMine also outperforms the
single-threaded implementation by 24.3X on MiCo and by
44.3X on Patents, showing that its high-level abstraction
does not sacrifice any performance for this application. Since
CiteSeer is a tiny graph, AutoMine’s parallelization adds
non-trivial overhead and shows worse performance than the
single-threaded implementation.

The same trend continues for motif counting and 5-clique
counting. Motif counting is more compute-intensive than
triangle counting, so all the systems take much longer time.
Though MiCo and Patents can easily fit into the memory,
RStream still heavily uses the disk and yields poor perfor-
mance for 3-motif counting.When performing 4-motif count-
ing, RStream’s execution times out after 48 hours on MiCo
and runs out of disk space on Patents. Arabesque can only
process the smallest graph and runs out of memory with
10 machines for the other two. AutoMine only takes up to
22 seconds to run 4-motif counting on any of the graphs.
AutoMine is particularly good at clique counting thanks to
its aggressive application of the root-symmetry optimization.
It only needs 0.17 seconds to run 5-CC Patents, leading to a
speedup of 777X over RStream and 1011X over Arabesque.
FSM is a special application because of its support pa-

rameter. Since support is essentially a threshold to filter out
infrequent patterns, the larger support is, the better the per-
formance is for RStream and Arabesque. Because CiteSeer
is a tiny graph, with support ≥ 300 most patterns are fil-
tered out, leading to trivial computation overhead. RStream
is hence not much slower than AutoMine. For both MiCo
and Patents, AutoMine is consistently faster than RStream
and Arabesque. Notice that AutoMine does not benefit from
the support parameter as much as RStream and Arabesque.
A plausible reason is that the support parameter substan-
tially reduces the memory consumption for RStream and
Arabesque, but AutoMine has little memory space overhead
even with support of 1. Filtering out the size-3 patterns does
not affect the number of iterations of the two outermost
loops AutoMine needs to execute.

App. Sys. CiteSeer MiCo Patents

TC
AM 0.01 0.04 0.14
RS 0.01 2.5 9.6
AR 38.1 43.1 114.9
ST 0.003 0.97 6.2

3-MC AM 0.016 0.12 0.5
RS 0.13 1666.9 1149.1
AR 40.6 51.7 116

4-MC AM 0.024 22.0 20.0
RS 2.2 T F
AR F F F

5-CC AM 0.024 11.4 0.17
RS 0.075 F 134.1
AR 42.8 132.0 174.5

3-FSM
300

AM 0.024 0.88 3.9
RS 0.086 649.1 1453.2
AR F F F

3-FSM
500

AM 0.037 0.88 3.9
RS 0.088 182.6 1002.8
AR F F F

3-FSM
1K

AM 0.033 0.87 4.1
RS 0.09 2.5 81.5
AR 35.6 5790.1 F

3-FSM
5K

AM 0.02 0.039 3.9
RS 0.087 2.54 36.3
AR 41.6 120.8 F

Table 2. Comparisons between AutoMine (AM), single-
threaded triangle counting (ST), RStream (RS), and
Arabesque (AR) on CiteSeer, MiCo, and Patents. ‘T’ indicates
timeout after 48 hours of execution. ‘F’ indicates execution
failure due to insufficient memory or disk space.

1E+0

1E+3

1E+6

1E+9

1E+12

Ci
te
Se
er

M
iC
o

Pa
te
nt
s

Ci
te
Se
er

M
iC
o

Pa
te
nt
s

Ci
te
Se
er

M
iC
o

Pa
te
nt
s

Ci
te
Se
er

M
iC
o

Pa
te
nt
s

TC 3-MC 4-MC 5-CC

Sp
ac

e
ne

ed
 (b

yt
es

) AutoMine Rstream

Figure 5. Needed space for RStream and AutoMine to fit all
the data into memory.

Figure 5 shows the capacity needed by RStream and Au-
toMine to fit the entire workload (graph plus intermediates)
into the main memory (note that the RStream numbers are
a lower bound). When the space need exceeds the available
memory, RStream stores the data into disk. Triangle count-
ing, despite its simplicity, incurs on average 520MB space
overhead for intermediates. AutoMine reduces the average
space overhead to only 8.4KB. The results demonstrate the
efficient memory use of the automatically generated sched-
ules, which exploits the local graph structures and optimizes
data reuse.

1E-2

1E+0

1E+2

1E+4

1E+6

300 500 1K 5K 300 500 1K 5K 300 500 1K 5K

CiteSeer MiCo Patents

Ex
ec

ut
io

n
Ti

m
e

(S
)

AutoMine Rstream
TO TO

Figure 6. Size-4 FSM with different support parameters.

1E-2

1E+0

1E+2

1E+4

1E+6

TC 3-MC TC 3-MC TC 3-MC TC 3-MC TC 3-MC

LiveJournal-1 Orkut UK-2005 LiveJournal-2 Youtube

Ex
ec

ut
io

n
Ti

m
e(

S) AutoMine Rstream
TO TO TO

Figure 7. Results on larger graphs.

We also run AutoMine and RStream on size-4 FSM with
different support parameters. Figure 6 presents the results in
log scale. The missing bars for RStream indicate execution
failure due to insufficient disk space. “TO" on top of the bars
for RStream shows that its execution times out after 48 hours.
AutoMine successfully handles all the workloads. RStream
needs tremendous disk space and fails to process Patents
when support is small (i.e., less filtering). When support is
large, most patterns are filtered out, so RStream can fit the
data into main memory, producing better performance. Simi-
lar to the experiments on 3-FSM, AutoMine does not benefit
much from using support except on MiCo with support=5K,
which aggressively filters out most size-2 and size-3 patterns.

We run triangle counting and 3-motif counting on the 3
larger graphs used in the RStream paper aswell as LiveJournal-
2 and Youtube. RStream runs out of disk space or times out
for all the 3-motif counting runs and TC on UK-2005. Figure 7
hence only shows the triangle counting results for RStream.
AutoMine runs at least 140.5X faster than RStream, because it
can easily fit the workload into memory even for the largest
graph UK-2005, while RStream demands too much disk (e.g.,
at least 147TB for UK-2005).

8.3 Comparisons with ASAP
ASAP samples edges to produce approximate graph mining
results. Though AutoMine always generates exact graphmin-
ing programs, we compare AutoMine with ASAP to show
that without a high-performance baseline system, the ap-
proximation techniques fail to yield satisfactory performance.
We point out that the ASAP paper uses 5% as the error target
to report their results. This is an aggressive setting, because
prior work shows that even with 1% error target, the approx-
imation techniques can produce two orders of magnitude

0.016 0.12 0.78

4

1.1
2.8

4.5

11.5

0
2
4
6
8

10
12
14

CiteSeer MiCo Youtube LiveJournal-2

Ex
ec

ut
io

n
Ti

m
e

(S
)

AutoMine
ASAP

Figure 8. Results versus ASAP

75

100

125

150

175

200

Ex
ec

ut
io

n
Ti

m
e

(S
)

11_3_8 12_3_11 12_3_8 12_5_6 12_5_7 13_3_11
13_5_10 13_5_7 13_5_9 13_7_5 14_5_10 14_7_8

Figure 9. Candidate Schedules

performance improvement [31]. Figure 8 shows the perfor-
mance comparisons for 3-motif counting on 4 graphs used by
the ASAP paper. Despite producing the exact counts using a
single machine, AutoMine outperforms ASAP, running on
16 machines, by up to 68.8X (on average 12.8X). The reason
is that ASAP follows Arabesque’s basic approach to enu-
merate and store embeddings, hence inheriting the major
weaknesses of inefficient algorithms and high memory con-
sumption. It is possible to integrate the approximation tech-
niques of ASAP into AutoMine when generating schedules,
which has potential to produce much better performance if
the user is willing to tolerate some accuracy loss.

8.4 Evaluating AutoMine’s techniques
Schedule Selection AutoMine explores the schedule space
and may generate many schedules for the same pattern.
When there are multiple patterns (e.g., motif counting), the
space is even larger with different combinations of the sched-
ules for these patterns. To evaluate the effectiveness of Au-
toMine’s automatic approach to produce an optimized com-
bined schedule, we enumerate all the 560 possible combined
schedules for size-4 motif counting, which operates on 6 pat-
terns. Figure 9 shows the performance results of the sched-
ules running on Patents. We use 3 parameters to group the
schedules for a clear presentation of the data, namely the
number of vertex sets, the number of intersection operations,
and the number of subtraction operations in the generated
static program. Each data point in the figure is represented
by a tuple of these parameters. We make three observations.
First, the schedules with the same parameters tend to per-
form similarly. Second, schedules with different parameters
(e.g., 12_3_11 and 13_5_9) may also have similar performance.

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1 10 20 30 40

Ex
ec

ut
io

n
Ti

m
e

(S
)

Number of Threads

TC Patents

TC Orkut

TC Livejournal-1

3-MC Patents

3-MC Orkut

3-MC Livejournal-1

4-CC Patents

4-CC Orkut

4-CC Livejournal-1

Figure 10. Threading scalability

Finally, the optimal schedule is about 2.4X faster than the
slowest schedule. AutoMine’s greedy approach described in
Section 6.3 finds the schedule represented by the star symbol,
which is 9.9% slower than the optimal schedule.

Multi-core Scalability AutoMine automatically generates
parallel programs to leverage the multiple cores on the plat-
form. Figure 10 shows the performance improvement with
more threads. From 1 thread to 10 threads, AutoMine enjoys
almost linear scalability, which becomes worse beyond 10
threads and further degrade beyond 20 threads. The reason
is that the systems has 2 CPUs, each with 10 cores. AutoMine
can efficiently utilize 1 CPU but using 2 CPUs triggers the
NUMA effect, which is exacerbated by the irregular mem-
ory accesses inherent in graph applications. By launching
more than 20 threads, AutoMine has to run more than one
thread per core with hyper-threading, leading to diminish-
ing returns. With low memory consumption and excellent
scalability to physical cores, we would expect AutoMine to
perform well in a distributed environment, even with trivial
data replication, though such an evaluation is outside the
scope of this paper.

Out-of-core Processing We use the largest graph, GSH-
2015, to evaluate AutoMine’s out-of-core processing capabil-
ity. The graph has 25.6B edges, requiring 103.4GB disk space
to store. To perform triangle counting on this graph, RStream
needs at least 2.4PB disk space, and Arabesque requires at
least 40,000 machines (each with 64GB of memory). Since
AutoMine cannot fit the graph data into the main memory, it
leverages the out-of-core support to perform triangle count-
ing. AutoMine finishes triangle counting in 4966 seconds
and triggers 3.8M page faults. It can even perform size-4
clique counting on this graph, which takes 45399 seconds
(12.6 hours), triggering 35M page faults. This total amount
of disk I/O is far more tolerable than what RStream requires,
even using a mechanism as simple as paging.

Scalability to Larger Patterns We use Youtube and Orkut
to evaluate AutoMine’s scalability to larger patterns, specifi-
cally cliques of up to 8 vertices. Since the pattern matching
problem is a variant of Subgraph Isomorphism, a well-known

1E-2

1E+0

1E+2

1E+4

6-CC 7-CC 8-CC 6-CC 7-CC 8-CC

Youtube Orkut

Ex
ec

ut
io

n
Ti

m
e(

S)

Figure 11. AutoMine Performance for Large Patterns

NP-Complete problem, scaling to large patterns is very diffi-
cult. As far as we are aware, these are the first 8-node pattern
results published for graphs of this scale, which can be seen
in Figure 11. RStream times out at 12 hours for all 6 of the
experiments shown, even the ones that take AutoMine less
than 1 second to complete. This showcases the real power
of AutoMine to enable pattern mining at scales which were
not possible with prior systems.

9 Related Work
Graph mining systems and algorithms. Arabesque [46]
built on Giraph [1] is the first generic distributed graph
mining system that spurs much interest in the community.
G-thinker [55] and G-miner [10] address some of the per-
formance issues of Arabesque with lower-level interfaces.
Unfortunately, the current release of the systems does not
support frequent subgraph mining and motif counting. Dist-
Graph [45] is a distributed system to focus on FSM. It lever-
ages pruning techniques to reduce the search space and
provides optimized graph partitioning and collective commu-
nication operations. ScaleMine [3] is an MPI-based system
to perform FSM, which uses approximation to optimize load
balancing, prune the search space, and guide intra-task par-
allelism. ASAP [23] accelerates graph mining by sampling
subgraph patterns but can only produce approximate results.

The distributed graph mining systems use expensive clus-
ters and are difficult to debug. To address these issues, Wang
et al. propose RStream [51], the first single-machine, out-
of-core mining system. It supports a rich set of relational
algebra operators, such as join, for programmers to compose
mining applications which are executed by the underlying
runtime through data streaming from and to disk. Though
RStream efficiently implements out-of-core processing and
the relational algebra operators, its abstraction, which is sim-
ilar to that of Arabesque, leads to inefficient graph mining
algorithms and high memory consumption by introducing
severe, unnecessary synchronization. In contrast, AutoMine
leverages a fundamentally different set-centric abstraction,
so neither Arabesque nor RStream can implement our meth-
ods.
Motif counting has attracted significant attention in the

data mining community [4, 22, 30, 38, 53]. Ahmed et al. care-
fully consider the combinatorial properties of the motifs to

reduce the complexity of the algorithms [4]. Our automat-
ically generated algorithms are similar to their manually
designed ones. Researchers also propose approximate motif
counting algorithms [6, 13, 31, 36, 38] based on sampling,
which may be implemented in AutoMine if exact counting
is not required.

Graph computation systems. Most distributed graph com-
putation systems [11, 15, 18, 19, 28, 29, 33, 39, 41, 54, 56, 60,
64] implement the vertex-centric or edge-centric program-
ming model. The programmer has to implement low-level
functions to run on each vertex or edge, which are difficult
to write to identify subgraph patterns. Performance opti-
mization of such systems mainly focuses on data reorganiza-
tion [64], load balancing [11], communication reduction [18],
or graph partitioning [17, 64]. AutoMine may implement
some of these techniques (e.g., locality optimization) to fur-
ther improve performance.

Many single-machine graph computation systems [34, 37,
42, 44, 52, 58, 59] assume that the input graph as well as the
intermediate data can fit in the main memory. Because mod-
ern machines typically have large memory and the graph
computation algorithms do not generate much intermediate
data, these systems can practically handle most real-world
graphs. They heavily optimize locality and scheduling, and
achieve great performance for a broad set of graph computa-
tion problems.

Out-of-core graph computation on a single machine has at-
tracted great attention since the introduction of GraphChi [25],
the first of its kind. The idea is to stream edges and updates
from and to disk as partitions if they do not fit in the mem-
ory. Many systems [5, 20, 21, 61, 63, 65] leverage this idea
with different optimizations. X-stream [40] optimizes away
random accesses on vertex data but may stream unuseful
edges to the memory. Vora et al. [49] proposes a runtime
to filter out edges that make no contribution to the update
of vertices. GraphQ [50] can figure out the edge partitions
that may be needed by the queries and only load these parti-
tions. AutoMine leverages memory-mapped I/O to support
out-of-core processing that efficiently exploits the locality
of subgraph patterns and the neighbor set of hot vertices.

Compiler optimization for graph computation. Zhang
et al. propose a DSL called GraphIt [62] for graph compu-
tations and a compiler to generate efficient code. GraphIt,
similar to Halide [27] for image processing and TVM [12] for
deep learning, separates the algorithm and its schedule. This
decomposition enables relatively easy application of a set
of compiler optimization techniques, such as edge traversal
direction, locality improvement, and kernel fusion. While
GraphIt has a sufficiently general programming interface, it
cannot express the functional relationships between vertices.
So its optimization phases cannot fundamentally restructure
the loop ordering to resolve dependencies according to the
ideas proposed in this paper. Pai and Pingali [35] propose

a compiler to compile graph computation algorithms for
GPUs. The compiler particularly addresses the challenges of
optimizing throughput due to the special thread organiza-
tion, the SIMD execution model, and the complex memory
hierarchy of the GPU architecture. The Abelian [16] com-
piler takes a graph computation algorithm and generates
code to execute on distributed systems with heterogeneous
processors.

10 Conclusion and Future Work
We proposed a system to produce up to several-order-of-
magnitude higher performance than existing systems for a
variety of graph mining tasks on real-world graphs. The sys-
tem provides high-level interfaces, which assume no knowl-
edge of the user about graph mining algorithms, and auto-
matically generates efficient mining programs. Though the
system runs on a single machine, it can process very large
graphs with tens of billions of edges that existing systems
cannot handle. It is interesting to extend AutoMine for dis-
tributed processing when the input graphs cannot even fit
into the disk of a single machine. In this case, AutoMine’s
local exploration complicates graph partitioning and load bal-
ancing. It is also critical to implement the basic set operators
efficiently in a distributed manner.

Acknowledgements
We would like to thank Muthian Sivathanu (our shepherd)
and the anonymous reviewers for their constructive com-
ments. We also would like to thank Feng Yan for sharing his
servers to conduct part of the experiments. This project was
supported in part by NSF grant CCF-1823005 and an NSF
CAREER Award (CNS-1750760).

References
[1] Apache giraph. http://giraph.apache.org/.
[2] Orkut social network. http://snap.stanford.edu/data/com-Orkut.html.
[3] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat,

and Fuad Jamour. Scalemine: scalable parallel frequent subgraph
mining in a single large graph. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2016, Salt Lake City, UT, USA, November 13-18, 2016, pages
716–727, 2016.

[4] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick G.
Duffield. Efficient graphlet counting for large networks. In 2015
IEEE International Conference on Data Mining, ICDM 2015, Atlantic
City, NJ, USA, November 14-17, 2015, pages 1–10, 2015.

[5] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen,
and Weimin Zheng. Squeezing out all the value of loaded data: An
out-of-core graph processing system with reduced disk I/O. In 2017
USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara,
CA, USA, July 12-14, 2017., pages 125–137, 2017.

[6] Maryam Aliakbarpour, Amartya Shankha Biswas, Themitstoklis
Gouleakis, John Peebles, Ronitt Rubinfeld, and Anak Yodpinyanee.
Sublinear-time algorithms for counting star subgraphs with applica-
tions to join selectivity estimation. CoRR, abs/1601.04233, 2016.

[7] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang
Lan. Group formation in large social networks: Membership, growth,

http://giraph.apache.org/
http://snap.stanford.edu/data/com-Orkut.html

and evolution. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’06, pages
44–54, New York, NY, USA, 2006. ACM.

[8] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Lay-
ered label propagation: A multiresolution coordinate-free ordering for
compressing social networks. In Sadagopan Srinivasan, Krithi Ramam-
ritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi Kumar,
editors, Proceedings of the 20th international conference on World Wide
Web, pages 587–596. ACM Press, 2011.

[9] Paolo Boldi and Sebastiano Vigna. The webgraph framework I: com-
pression techniques. In Proceedings of the 13th international conference
on World Wide Web, WWW 2004, New York, NY, USA, May 17-20, 2004,
pages 595–602, 2004.

[10] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James
Cheng. G-miner: an efficient task-oriented graph mining system. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto,
Portugal, April 23-26, 2018, pages 32:1–32:12, 2018.

[11] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra:
differentiated graph computation and partitioning on skewed graphs.
In Proceedings of the Tenth European Conference on Computer Systems,
EuroSys 2015, Bordeaux, France, April 21-24, 2015, pages 1:1–1:15, 2015.

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, andArvind Krishnamurthy. TVM: an automated
end-to-end optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018., pages 578–594, 2018.

[13] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately
counting triangles in sublinear time. In FOCS, 2015.

[14] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and
Panos Kalnis. GRAMI: frequent subgraph and pattern mining in a
single large graph. PVLDB, 7(7):517–528, 2014.

[15] Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo,
Qiang Yin, Ping Lu, Yang Cao, and Ruiqi Xu. Parallelizing sequential
graph computations. ACM Trans. Database Syst., 43(4):18:1–18:39,
December 2018.

[16] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and
Keshav Pingali. Abelian: A compiler for graph analytics on distributed,
heterogeneous platforms. In Euro-Par 2018: Parallel Processing - 24th
International Conference on Parallel and Distributed Computing, Turin,
Italy, August 27-31, 2018, Proceedings, pages 249–264, 2018.

[17] Gurbinder Gill, Roshan Dathathri, Loc Hoang, and Keshav Pingali.
A study of partitioning policies for graph analytics on large-scale
distributed platforms. PVLDB, 12(4):321–334, 2018.

[18] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. In 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hollywood, CA, USA, October
8-10, 2012, pages 17–30, 2012.

[19] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. Graphx: Graph processing in
a distributed dataflow framework. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pages 599–
613, Broomfield, CO, 2014. USENIX Association.

[20] Wei Han, Daniel Mawhirter, Matthew Buland, and Bo Wu. Graphie:
Large-scale asynchronous graph traversals on just a gpu. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
PACT 2017, Portland, Oregon, USA, September 9-13, 2017.

[21] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee,
Min-Soo Kim, Jinha Kim, and Hwanjo Yu. Turbograph: a fast parallel
graph engine handling billion-scale graphs in a single PC. In The 19th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages
77–85, 2013.

[22] Tomaz Hocevar and Janez Demsar. A combinatorial approach to
graphlet counting. Bioinformatics, 30(4):559–565, 2014.

[23] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkatara-
man, Vladimir Braverman, and Ion Stoica. ASAP: Fast, approximate
graph pattern mining at scale. In 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18), pages 745–761,
Carlsbad, CA, 2018. USENIX Association.

[24] Jeremy Kepner, Peter Aaltonen, David A. Bader, Aydin Buluç, Franz
Franchetti, John R. Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, Scott McMillan, Carl Yang, John D.
Owens, Marcin Zalewski, Timothy G. Mattson, and José E. Moreira.
Mathematical foundations of the graphblas. In 2016 IEEE High Perfor-
mance Extreme Computing Conference, HPEC 2016, Waltham, MA, USA,
September 13-15, 2016, pages 1–9, 2016.

[25] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale
graph computation on just a pc. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, OSDI’12,
pages 31–46, 2012.

[26] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible explanations.
In Proceedings of the Eleventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August
21-24, 2005, pages 177–187, 2005.

[27] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and
Jonathan Ragan-Kelley. Differentiable programming for image process-
ing and deep learning in halide. ACM Trans. Graph., 37(4):139:1–139:13,
2018.

[28] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Distributed graphlab: A frame-
work for machine learning in the cloud. PVLDB, 5(8):716–727, 2012.

[29] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system
for large-scale graph processing. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’10,
pages 135–146, 2010.

[30] D. Marcus and Y. Shavitt. Rage - a rapid graphlet enumerator for large
networks. Comput. Netw., 56(2):810–819, February 2012.

[31] Daniel Mawhirter, Bo Wu, Dinesh Mehta, and Chao Ai. Approxg: Fast
approximate parallel graphlet counting through accuracy control. In
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID 2018, Washington, DC, USA, May 1-4, 2018, pages
533–542, 2018.

[32] Frank McSherry, Michael Isard, and Derek Gordon Murray. Scalability!
but at what cost? In 15th Workshop on Hot Topics in Operating Systems,
HotOS XV, Kartause Ittingen, Switzerland, May 18-20, 2015, 2015.

[33] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martín Abadi. Naiad: a timely dataflow system. In
ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP
’13, Farmington, PA, USA, November 3-6, 2013, pages 439–455, 2013.

[34] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight
infrastructure for graph analytics. In ACM SIGOPS 24th Symposium on
Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November
3-6, 2013, pages 456–471, 2013.

[35] Sreepathi Pai and Keshav Pingali. A compiler for throughput opti-
mization of graph algorithms on gpus. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH
2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, pages
1–19, 2016.

[36] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung
Wu. Counting and sampling triangles from a graph stream. PVLDB,
6(14):1870–1881, 2013.

[37] Zhen Peng, Alexander Powell, Bo Wu, Tekin Bicer, and Bin Ren.
Graphphi: efficient parallel graph processing on emerging throughput-
oriented architectures. In Proceedings of the 27th International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT 2018,
Limassol, Cyprus, November 01-04, 2018, pages 9:1–9:14, 2018.

[38] Mahmudur Rahman, Mansurul Bhuiyan, and Mohammad Al Hasan.
Graft: An approximate graphlet counting algorithm for large graph
analysis. In Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, CIKM ’12, pages 1467–1471,
2012.

[39] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy
Zwaenepoel. Chaos: Scale-out graph processing from secondary stor-
age. In Proceedings of the 25th Symposium on Operating Systems Princi-
ples, SOSP ’15, pages 410–424, 2015.

[40] Amitabha Roy, Ivo Mihailovic, andWilly Zwaenepoel. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 472–488, 2013.

[41] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. Fast
and concurrent RDF queries with rdma-based distributed graph explo-
ration. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016.,
pages 317–332, 2016.

[42] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’13, pages 135–146, 2013.

[43] Julian Shun and Kanat Tangwongsan. Multicore triangle computa-
tions without tuning. In 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages
149–160, 2015.

[44] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Sub-
ramanya R. Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi,
Dipankar Das, and Pradeep Dubey. Graphmat: High performance
graph analytics made productive. Proc. VLDB Endow., 8(11), July 2015.

[45] Nilothpal Talukder and Mohammed J. Zaki. A distributed approach
for graph mining in massive networks. Data Min. Knowl. Discov.,
30(5):1024–1052, 2016.

[46] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos
Siganos, Mohammed J. Zaki, and Ashraf Aboulnaga. Arabesque: a
system for distributed graph mining. In Proceedings of the 25th Sym-
posium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015, pages 425–440, 2015.

[47] Chad Voegele, Yi-Shan Lu, Sreepathi Pai, and Keshav Pingali. Parallel
triangle counting and k-truss identification using graph-centric meth-
ods. In 2017 IEEE High Performance Extreme Computing Conference,
HPEC 2017, Waltham, MA, USA, September 12-14, 2017, pages 1–7, 2017.

[48] Chad Voegele, Yi-Shan Lu, Sreepathi Pai, and Keshav Pingali. Parallel
triangle counting and k-truss identification using graph-centric meth-
ods. In 2017 IEEE High Performance Extreme Computing Conference,
HPEC 2017, Waltham, MA, USA, September 12-14, 2017, pages 1–7, 2017.

[49] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the edges you need:
A generic i/o optimization for disk-based graph processing. In 2016
USENIX Annual Technical Conference (USENIX ATC 16), pages 507–522,
Denver, CO, 2016. USENIX Association.

[50] Kai Wang, Guoqing (Harry) Xu, Zhendong Su, and Yu David Liu.
Graphq: Graph query processing with abstraction refinement - scalable
and programmable analytics over very large graphs on a single PC. In
2015 USENIX Annual Technical Conference, USENIX ATC ’15, July 8-10,
Santa Clara, CA, USA, pages 387–401, 2015.

[51] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guo-
qing Harry Xu. Rstream: Marrying relational algebra with streaming
for efficient graph mining on A single machine. In 13th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2018,

Carlsbad, CA, USA, October 8-10, 2018., pages 763–782, 2018.
[52] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy

Riffel, and John D. Owens. Gunrock: A high-performance graph pro-
cessing library on the gpu. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
2015, pages 265–266, New York, NY, USA, 2015. ACM.

[53] Sebastian Wernicke and Florian Rasche. Fanmod: A tool for fast
network motif detection. Bioinformatics, 22(9):1152–1153, May 2006.

[54] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan
Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou. Gram: scaling graph
computation to the trillions. In Proceedings of the Sixth ACM Sym-
posium on Cloud Computing, SoCC 2015, Kohala Coast, Hawaii, USA,
August 27-29, 2015, pages 408–421, 2015.

[55] Da Yan, Hongzhi Chen, James Cheng, M. Tamer Özsu, Qizhen Zhang,
and John C. S. Lui. G-thinker: Big graph mining made easier and faster.
CoRR, abs/1709.03110, 2017.

[56] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Blogel: A block-centric
framework for distributed computation on real-world graphs. PVLDB,
7(14):1981–1992, 2014.

[57] Jaewon Yang and Jure Leskovec. Defining and evaluating network com-
munities based on ground-truth. Knowledge and Information Systems,
42(1):181–213, 2015.

[58] Feng Zhang, Bo Wu, Jidong Zhai, Bingsheng He, and Wenguang Chen.
Finepar: Irregularity-aware fine-grained workload partitioning on
integrated architectures. In The International Symposium on Code
Generation and Optimization, 2017.

[59] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-aware graph-
structured analytics. In Proceedings of the 20th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP 2015,
San Francisco, CA, USA, February 7-11, 2015, pages 183–193, 2015.

[60] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and
Weimin Zheng. Exploring the hidden dimension in graph processing.
In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages
285–300, 2016.

[61] Mingxing Zhang, YongweiWu, Youwei Zhuo, Xuehai Qian, Chengying
Huan, and Kang Chen. Wonderland: A novel abstraction-based out-
of-core graph processing system. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA,
USA, March 24-28, 2018, pages 608–621, 2018.

[62] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Ju-
lian Shun, and Saman P. Amarasinghe. Graphit: a high-performance
graph DSL. PACMPL, 2(OOPSLA):121:1–121:30, 2018.

[63] Da Zheng, Disa Mhembere, Randal C. Burns, Joshua T. Vogelstein,
Carey E. Priebe, and Alexander S. Szalay. Flashgraph: Processing
billion-node graphs on an array of commodity ssds. In Proceedings
of the 13th USENIX Conference on File and Storage Technologies, FAST
2015, Santa Clara, CA, USA, February 16-19, 2015, pages 45–58, 2015.

[64] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
Gemini: A computation-centric distributed graph processing system.
In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 301–316, Savannah, GA, 2016. USENIX
Association.

[65] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-
scale graph processing on a single machine using 2-level hierarchical
partitioning. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15), pages 375–386, Santa Clara, CA, 2015. USENIX Association.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Single-threaded Triangle Counting vs. State-of-the-art Graph Mining Systems
	2.2 Root causes and challenges

	3 Overview of AutoMine
	4 Set Based Representation
	5 Schedule Generation
	5.1 Modeling
	5.2 Multiplicity
	5.3 Root Symmetry

	6 Code Generation
	6.1 Generating Code for a Single Pattern
	6.2 Estimating Optimality
	6.3 Multi-Pattern Scheduling
	6.4 Supporting Infrastructure

	7 Additional Features
	7.1 Supporting out-of-core processing
	7.2 Supporting labeled graphs

	8 Evaluation
	8.1 Methodology
	8.2 Comparisons with RStream and Arabesque
	8.3 Comparisons with ASAP
	8.4 Evaluating AutoMine's techniques

	9 Related Work
	10 Conclusion and Future Work
	References

